According to recent Household Pulse Survey data, roughly 1.1% of households were displaced due to disasters in the United States in recent years. Although most households returned relatively quickly, 20% were displaced for longer than 1 month, and 14% had not returned by the time of the survey. Protracted displacement creates enormous hardships for affected households and communities, yet few disaster risk analyses account for the time component of displacement. Here, we propose predictive models for household displacement duration and return for practical integration within disaster risk analyses, ranging in complexity and predictive power. Two classification tree models are proposed to predict return outcomes with a minimum number of predictors: one that considers only physical factors (TreeP) and another that also considers socioeconomic factors (TreeP&S). A random forest model is also proposed (ForestP&S), improving the model’s predictive power and highlighting the drivers of displacement duration and return outcomes. The results of the ForestP&S model highlight the importance of both physical factors (e.g., property damage and unsanitary conditions) and socioeconomic factors (e.g., tenure status and income per household member) on displacement outcomes. These models can be integrated within disaster risk analyses, as illustrated through a hurricane scenario analysis for Atlantic City, NJ. By integrating displacement duration models within risk analyses, we can capture the human impact of disasters more holistically and evaluate mitigation strategies aimed at reducing displacement risk.
Explore trends related to property damage and displacement duration from the United States Household Pulse Survey at https://hps.nicolepaul.io/.